Somaclonal Variation as a Breeding Tool in American Chestnut

Christie Lovat, Ph.D. Candidate
Canadian Chestnut Council Symposium
March 26th, 2014
Outline

• Introduction:
 • Disease susceptibility in American chestnut
 • Somatic embryogenesis
 • Somaclonal variation
 • Somatic embryogenesis in *C. dentata*

• Objectives and Hypotheses

• Methodology:
 • Indirect somatic embryogenesis
 • Testing for disease tolerance
Disease Susceptibility

- Chestnut blight
 - *Cryphonectria parasitica*
- Ink disease
 - *Phytophthora* sp.
 - Principally *P. cambivora* and *P. cinnamomi*
- *C. dentata* is highly susceptible to both diseases.
 - Asian *Castanea* spp. are tolerant
 - Disease tolerance in *C. dentata* pursued by backcross breeding to Asian *Castanea* spp.

(Burnham 1988; Jeffers 2009)
Somatic Embryogenesis

• Small explants of plant tissues → meristematic tissues → embryos → complete plantlets.
• “Somatic plantlets”

(www.eplantscience.com)
Somaclonal Variation

- Product of somatic embryogenesis.
- Regenerated plantlets have a wide range of phenotypic variations.
 - Known as somaclonal variants.
 - Includes chromosome alterations, epigenetic changes, one time deletions or insertions, transposable elements, etc.
- Disease tolerance is commonly affected in somaclonal variants.
- It’s a numbers game:
 - Undirected changes

(Scowcroft 1985; Wang and Wang 2012)
Somatic Embryogenesis:
C. dentata

- Current somatic embryogenesis:
 - Andrade and Merkle 2005

- Direct somatic embryogenesis:
 - Explant = tissues destined to become embryos

- Explant:
 - Immature zygotic embryos

- Limitations:
 - Explants can only be harvested for 2 weeks midsummer
 - Low explant induction rates (5-6%)
 - Zygotic embryos = heterozygotes of unknown phenotype
Somatic Embryogenesis: *C. dentata*

- Indirect somatic embryogenesis:
 - Somatic embryogenesis from vegetative tissues
 - Leaves, stems, etc.
 - Possible with *C. sativa*
 - Never investigated with *C. dentata*

- Benefits:
 - Year-round somatic embryogenesis for *C. dentata*
 - Possible higher induction rates (29% in *C. sativa*)
 - Vegetative tissues = possible to use mature trees as explants
 - Somatic embryogenesis with elite trees

(Ballester et al. 2001; Corredoira et al. 2005)
Objectives and Hypotheses

• Objectives:
 • To develop a methodology for indirect somatic embryogenesis of *C. dentata*.
 • To increase through somaclonal variation, the disease tolerance of *C. dentata* to chestnut blight and ink disease.

• Hypotheses:
 • Ideal explants will be identified for indirect somatic embryogenesis in *C. dentata*.
 • Somaclonal variants with increased disease tolerance will be generated.
Indirect Somatic Embryogenesis

• Seedlings are extremely vigorous
 • Make excellent explants for woody species

• Explant types tested in this study:
 • Cotyledon
 • Epicotyl
 • Hypocotyl
 • True root tips
 • True leaves

• Two media procedures tested:
 • Andrade and Merkle (2005) procedure for zygotic embryos
 • Ballester et al. (2001) procedure for leaf explants for C. sativa
Determining Disease Tolerance

• New leaf assay technique from Newhouse et al. (2014).
• Relative measure of disease tolerance
• Each somatic line compared to:
 • Positive control: resistant *C. mollissima*
 • Negative control: known susceptible *C. dentata*
 • Somatic variation control: source plant of the somatic line
(Newhouse et al. 2014)
• Acknowledgements

• My supervisor:
 • Dr. Danielle J. Donnelly

• Lab mates:
 • Christina Larder
 • Doaa Elkassas

• Procedure help and support:
 • Dr. Scott Merkle
 • Dr. William Powell
 • Dr. Adam Dale
 • Mr. Dragan Galic
 • Mr. Greg Miller
 • Mr. Leslie Corkum
 • Ms. Jocelyn Clark
 • Dr. Dennis Fullbright
 • Mr. Bruce Levine
 • The American Chestnut Foundation
 • The Canadian Chestnut Council
 • The Montreal Botanical Gardens

• Financial Support
 • McGill University
 • Fonds de recherche nature et technologies (FQRNT)
Questions?
Literature Cited

• Burnham CR (1988) The restoration of the American chestnut: Mendelian genetics may solve a problem that has resisted other approaches. Am Sci 76:478-487

